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Abstract
A theorem from control theory relating the Lie algebra generated by vector
fields on a manifold to the controllability of the dynamical system is shown
to apply to holonomic quantum computation. Conditions for deriving the
holonomy algebra are presented by taking covariant derivatives of the curvature
associated with a non-Abelian gauge connection. When applied to the optical
holonomic computer, these conditions determine that the holonomy group of
the two-qubit interaction model contains SU(2) × SU(2). In particular, a
universal two-qubit logic gate is attainable for this model.

PACS numbers: 03.67.Lx, 03.65.Vf

1. Introduction

Controlling quantum dynamics to effect a desired unitary evolution is a fundamental issue
in quantum computation. Full control over the system dynamics and hence the ability to
realize any logic gate is called universal quantum computation. In recent years, there has been
considerable interest in conditions for universality and it has been proved that for an n-level
quantum system universality is a dense condition, being satisfied by almost all computational
models [1–3].

Despite the richness of the mathematical model, the effects of quantum noise make it
a tremendous challenge to manifest this property in nature. Zanardi and Rasetti [4] have
proposed a novel methodology for the control of quantum information which may provide
a resolution to these competing phenomena. Holonomic quantum computation (HQC), as
introduced in [4], is a theoretically appealing model that can provide universal computation,
and, due to the geometrical nature of the framework, possesses intrinsic robustness against
decoherence and control imperfection.

0305-4470/02/245107+08$30.00 © 2002 IOP Publishing Ltd Printed in the UK 5107

http://stacks.iop.org/ja/35/5107


5108 D Lucarelli

In this paper, we are primarily interested in the existence of the logic gates available to the
experimentalist within the HQC framework. Specifically, we report a result from geometric
control theory that simplifies the calculation of the holonomy group associated with a non-
Abelian gauge connection. The application of this theorem to HQC establishes conditions
for universality in general and in particular proves the universality of the optical holonomic
computer [4–8]. We refer the reader to the literature for a more detailed exposition of the
HQC set-up [7, 8], techniques for the calculation of the holonomies [8, 9], and its intrinsic
fault-tolerance [10, 11].

The methodology is briefly described as follows. The quantum code is realized by the
n-dimensional eigenspace, C, of an n-fold degenerate Hamiltonian H0 with eigenvalue E0.
Let M be a d-dimensional real parameter space. We suppose that the experimentalist can
implement unitary transformations U(η) depending continuously on the parameter η ∈ M. A
set of isospectral Hamiltonians is formed by the adjoint orbit of H0

O(H0) ≡ {U(η)H0U†(η), η ∈ M}. (1)

Let γ : [0, T ] → M be a closed curve in parameter space. If we traverse this loop
sufficiently slowly, the adiabatic theorem ensures that no energy level crossing will occur and
O(H0) forms a family of Hamiltonians that drive the dynamics. Let |ψ〉i ∈ C be the initial
state of the system, then after completing an adiabatic loop in parameter space, the initial and
final states are related by

|ψ〉f = eiE0T �A(γ )|ψ〉i ∈ C (2)

where eiE0T is the dynamical phase which will be omitted in the following by setting E0 = 0.
The matrix, �A(γ ) ∈ U(n), is the holonomy associated with the loop γ and for n > 1, these
non-Abelian holonomies are the logic gates of the quantum computer. The holonomy or
geometric phase [12] depends only on the geometry of the loop γ and can be expressed as

�A(γ ) = P exp
∮
γ

A (3)

where P denotes the path ordering and the skew-symmetric matrix valued one-form A is
known as the Wilczek–Zee connection [13] with matrix elements

A�̄�ηi ≡ 〈�̄|U†(η)
∂

∂ηi
U(η)|�〉. (4)

In this way, �A may be considered to be a map from the loop space of M to the matrix Lie
group U(n). The set Hol(A) := {�A(γ ) | γ ∈ M} forms a group under composition of loops
in parameter space and is, in general, a subgroup of U(n). Hol(A) is said to be the holonomy
group, and the corresponding Lie algebra is known as the holonomy algebra. When Hol(A)=
U(n), the connectionA is irreducible [4]. Clearly, irreducibility of the connection is sufficient
for universal computation since any n-level unitary transformation may be applied to the code
|ψ〉∈ C.

2. Universality

Since the work of Montgomery [14–17], mathematicians and engineers have cast certain
problems in the modelling and control of dynamical systems subject to non-holonomic
constraints in the language of gauge theory. These constraints come in two main varieties.
A cat in free fall experiences a dynamical constraint set by the requirement that its angular
momentum remains constant throughout its descent. An upside down cat with initial angular
momentum zero endeavours to achieve a rotation and land upright by altering its shape. When a
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mechanical system interacts with its environment, kinematic constraints are often encountered.
For example, kinematic constraints are in force for a mobile robot with two independently
controlled rear wheels subject to a no-slip constraint against the rolling surface [18].

Mathematically, the scenario is described by a connection on a principal G-bundle [19].
We recall these constructions and provide a geometric setting for the remarks made in the
introduction. A principal G-bundle is formed by manifolds Q (total space), M (base space), a
free Lie group action� : G×Q → Q and the canonical projectionQ

π→ Q/G ≡ M. If U is
a neighbourhood of M, then Q is locally diffeomorphic to the productU ×G. A smooth map
σ : U → Q, such that π ◦ σ = idM is called a local section over U.

The fibre π−1(p) over a point p ∈ M is identical to the group orbit and is denoted byGp.

Let g denote the Lie algebra of G. For any element, ξ ∈ g the group action �exp(t ξ)q defines
a curve though q ∈ Q. The infinitesimal generator ξq of the group action is defined as the
tangent vector

ξq := d

dt

∣∣∣∣
t=0

�exp(t ξ) q. (5)

The vertical subspace VqQ is defined to be the subspace of TqQ that is tangent to the fibre
Gp, by the previous definition we have the identification VqQ∼= g.

A connection A on Q is an Ad-equivariant Lie algebra-valued one-form A : TQ → g
such that A(ξq) = ξ for all ξ ∈ g. The horizontal space HqQ is the linear space
HqQ := {Xq ∈ TqQ | Aq(Xq) = 0}. The local connection form A is defined with respect
to a local section A = σ ∗(A). These definitions provide the splitting

TqQ = VqQ⊕HqQ (6)

of the tangent vectors into horizontal and vertical components. Note that

VqQ = KerTqπ and HqQ = KerAq . (7)

The projection map at a point defines an isomorphism from the horizontal space to the
tangent space to the base space by Tqπ : Hq → Tπ(q)M . Thus a curve q(t) ∈ Q defines a
curve in the base space by specifying a tangent vector at each point π(q(t)) = p(t). The
properties of the connection and the uniqueness theory of ODEs provide the reverse procedure
of reconstructing a curve in the total space, given a curve in the base space called the horizontal
lift [19]. Denote the horizontal lift of X ∈ TM by Xh and the horizontal part of Z ∈ TQ

as hZ. The horizontal lift of any closed curve in the base space maps the fibre to itself and
corresponds to a group element g by the automorphism qf = �gqi. Assuming direct control
over the base velocities, we seek a closed curve in the base space that achieves a desired group
translation in the fibre.

In the case of the cat (robot), the conservation law (no-slip constraint) defines a connection
on a principal bundle with group action SO(3)×Q → Q(SE(2)×Q → Q). The key point
in the modelling and control of these systems is that the horizontal distribution, defined by
the connection, encodes the constraint information. Thus a curve q(t) ∈ Q satisfies the
constraints if its tangent vectorXq(t) lies in Hq(t)Q for all t. Such a curve is called horizontal.
Given an initial state qi , the feasibility of reaching a final state qf is then equivalent to the
existence of a horizontal curve joining qi and qf . For control systems of this type, it is natural
to define the reachable set from qi as the set of points q ∈ Q that lie on a horizontal curve
originating at qi .

Theorem (Chow). Suppose Q is connected. Let Xhi , 1 � i � d be a local frame of the
horizontal space at q. Then any two points of Q can be joined by a horizontal curve if the
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iterated Lie brackets
[
Xhik ,

[
Xhik−1

, . . . ,
[
Xhi2 ,X

h
i1

]
. . .

]
evaluated at q ∈ Q span the tangent

space TqQ for all q.

For control systems without drift, this classical theorem [20] gives a sufficient condition
to determine whether the reachable set is the entire manifoldQ. If the Lie brackets defined in
the theorem fail to span all of TqQ, the reachable set may be characterized as follows. Denote
the subspace of TqQ defined in the theorem as

�q = span
{[
Xhik ,

[
Xhik−1

, . . . ,
[
Xhi2 ,X

h
i1

]
. . .

]; 1 � ik � d, 1 � k < ∞}
. (8)

The sub-bundle� = ⋃
q �q forms, by construction, an involutive distribution on the manifold

Q. If the rank of�q is constant as q is varied, the Frobenius theorem [21, 22] then asserts the
existence of an integral submanifold Q̃ ⊂ Q with � as its tangent bundle. This submanifold
is invariant under the constrained dynamics and forms the reachable set.

These arguments and the general principle embodied in the theorem are well known in
the quantum computation literature. In the usual dynamical approach to quantum computing,
the experimentalist has a repertoire of Hamiltonians {Hl}rl=1 that act on the quantum state.
If the Lie algebra generated by the −iHl under commutation is equal to su(n) (or u(n)), then
the system is deemed capable of performing universal computation. This is equivalent to the
notion of complete controllability for quantum systems [23–25]. It is not surprising, then, that
Chow’s theorem is decisive in the holonomic framework as well.

To establish universality of HQC, we must show that the holonomy group is rich enough
to generate a universal set of logic gates. The holonomy group is determined by the g-valued
curvature two-form defined by

F(X1,X2) = dA(hX1, hX2) (9)

where d denotes exterior differentiation. To evaluate the curvature we employ the structure
equation

F(X1,X2) = dA(X1,X2) + [A(X1),A(X2)] (10)

for X1,X2 ∈ TqQ. Since the connection A evaluates to zero on horizontal vectors, the
structure equation implies that F(

Xh1 ,X
h
2

) = −A([
Xh1 ,X

h
2

])
. Recalling that a connection can

be defined as a projection of a vectorX ∈ TqQ onto the vertical subspaceVqQ ∼= g, we see that
F(Xh, Y h) is the vertical component of the vector

[
Xh1 ,X

h
2

]
. The Ambrose–Singer theorem

expresses the holonomy group associated with the connection in terms of the curvature. As
stated in [19]:

Theorem (Ambrose–Singer). Let Q be a principal G-bundle over a manifold M. The Lie
algebra h of the holonomy group Holq0(A) of a point q0 ∈ Q agrees with the subalgebra of g
spanned by the elements of the form Fq(Xh, Y h) where Xh, Y h ∈ HqQ and ‘q is a point on
the same horizontal lift as q0’.

This theorem has been quoted by other authors to provide sufficient conditions for the
universality of HQC. The quoted statement, however, demands that we evaluate the curvature
on the horizontal space at every point q that is reachable from q0 via a horizontal curve. This
set of points, however, is the reachable set as defined above.

More tractable conditions are obtained from Chow’s theorem. By the above reasoning,
elements of the form

F(
Xhi ,X

h
j

) = −A([
Xhi ,X

h
j

]) F(
Xhi ,X

h
k

) = −A([
Xhi ,X

h
k

])
, . . . (11)

contribute a set of group directions obtained from brackets of horizontal vectors. According
to Chow’s theorem we must compute all the iterated Lie brackets of horizontal vectors.
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The vertical component of the vector
[
Xh1 ,

[
Xh2 ,X

h
3

]]
is given by DXh1

F(
Xh2 ,X

h
3

)
and

higher order Lie brackets are expressed as higher order covariant derivatives of the
curvature.

Corollary. Suppose Q is connected. The holonomy algebra at a point q0 ∈ Q is spanned by
the curvature forms F(

Xhi1 ,X
h
i2

)
and the covariant derivativesDXhik

DXhik−1
· · ·DXhi3

F(
Xhi2 ,X

h
i1

)
evaluated at q0.

This result appears in Montgomery [14]. A proof can be found in [17]. (See also [26].) It
is interesting to note that Montgomery’s original motivation, in addition to the cat’s problem,
was the optimal control of spin systems.

To apply this result to HQC we identify the relevant manifolds and the horizontal direction.
Following Fujii [6, 7], let H be a separable Hilbert space and define the manifolds

Stn(H) := {V = (v1, . . . , vn) ∈ H × · · · × H |V †V = Idn×n}
Grn(H) := {X ∈ B(H) |X2 = X,X† = X, trX = n}

where B(H) denotes the set of bounded linear operators on H. These manifolds are known
as the Stiefel and Grassmann manifolds, respectively. They form a principal bundle with
the (right) U(n) action on Stn(H) and the projection π : Stn(H) → Grn(H) given by
π(V ) = V V †. Denote this U(n)-bundle by P . Let M be the parameter space and let the map
� : M → Grn(H) be given. The principal bundle of interest is then formed by the pullback
of P by �, Q = �∗P with total space

Q = {(λ, V ) ∈ M × Stn(H) |�(λ) = π(V )}
over the base manifold M. To be precise, the left action of the matrix acting on a vector
|ψ〉 ∈ Cn as defined by (2) takes place in the Cn vector bundle associated with Q [6, 7].

An important special case of this construction, known as the CPn model, has been
shown to be generically irreducible [4]. In this case, H∼= Cn+1 = {|α〉}n+1

α=1 and H0 has an
n-dimensional degenerate subspace. The parameter spaceM = CPn is isomorphic to the orbit
of H0,

O(H0)∼= U(n + 1)

U(n)× U(1)
∼= SU(n + 1)

U(n)
∼= CPn.

Thus � is a surjective map of M = CPn onto O(H0)∼= Gr1,n+1. Due to the large parameter
space, this model can be shown to be irreducible by considering the span of the curvature
form only (and not its covariant derivatives). Note that this model requires control over
2n = dimRCPn parameters to control an n-level system.

In any case, the Wilczek–Zee connection (4) with its built-in Hermitian structure defines
the horizontal subspace by identifying horizontal vectors as those which are orthogonal to the
fibre [8, 13]. When applied to HQC, this result represents a significant reduction in the control
resources necessary for universality and thus broadens the class of quantum evolutions that are
capable of computation. Indeed, if one considers the span of the curvature form only, then one
incorrectly concludes that a necessary condition for irreducibility of a connection associated
to an n-level system is given by d(d − 1)/2 � n2 where d = dimRM [8].

3. Optical holonomic computer

It is widely believed that coherent superposition alone cannot account for the exponential
speed-up sought in the realization of a quantum computer. Quantum entanglement must also
be present [27]. As observed in [4, 8] the CPn model does not possess the multi-partite structure
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necessary for encoding entangled states. Attention is, therefore, directed to physical systems
that have a multi-partite structure built in from the start and over which the experimentalist can
exert control. While the results presented here apply to any HQC set-up, we are interested in
a model coming from quantum optics where displacing and squeezing devices realize control
operations acting on laser beams in a non-linear Kerr medium [4–8].

Let a†, a be the creation and annihilation operators of the harmonic oscillator and let
n = a†a be the number operator. Let H be the Fock space generated by a† and a with basis
{|ν〉 : ν = 0, 1, . . .}. Each qubit is encoded in the degenerate subspace of the interaction
Hamiltonian

H 1 = Xh̄n(n− 1) (12)

where X is a constant [5]. This computing scheme scales to a system of m qubits by employing
m lasers to form the product basis |ν1ν2 . . . νm〉 = |ν1〉 ⊗ |ν2〉 ⊗ . . . |νm〉 where νi ∈ {0, 1}.
In accordance with the quantum circuit model, a control strategy is devised to implement all
single qubit rotations and a non-trivial two-qubit transformation. A fundamental result then
asserts that universality of the entire quantum register of m qubits can be achieved by this set
of two-level local transformations [28].

Single-mode squeezing and displacing operators are employed to control the single qubit,

S(µ) = exp(µa†2 − µ̄a2) D(λ) = exp(λa† − λ̄a) (13)

where µ, λ ∈ C. These operators define a two-parameter orbit of H 1 under the unitary
transformation U(λ, µ) = D(λ)S(µ),

O(H 1) = U(λ, µ)H 1U†(λ, µ). (14)

The holonomy group associated with loops in the (λ, µ) parameter space is U(2) [5, 6].
To prove universality of the computational model it suffices to generate non-trivial U(4)

holonomies. For the two-qubit system, the Hamiltonian is given by

H 12 = Xh̄n1(n1 − 1) +Xh̄n2(n2 − 1) (15)

where ni is the number operator for the ith beam. Two-mode squeezing and displacing
operators realize control operations,

M(ζ) = exp(ζ a†1a
†
2 − ζ̄ a1a2) N(ξ) = exp(ξa†1a2 − ξ̄a1a

†
2) (16)

where ζ = r2 eiθ2, ξ = r3 eiθ3 ∈ C. In the adiabatic limit, the adjoint orbit under the action
U(ξ, ζ ) = N(ξ)M(ζ ),

O(H 12) = U(ξ, ζ )H 12U†(ξ, ζ ) (17)

drives the dynamics. The degenerate subspace of H 12 is given by the computational basis
{|00〉, |01〉, |10〉, |11〉}. Set |vac〉 = (|00〉, |01〉, |10〉, |11〉) ∈ St4(H ⊗ H).

We characterize the reachable set from q0 = (m, |vac〉) ∈ Q by applying the conditions
obtained from Chow’s theorem. The local connection coefficients Aν are written in terms of
the base variables only, (r2, θ2, r3, θ3) ∈ M ⊂ C2 [5, 8],

Ar2 =




0 0 0 −e−iθ2

0 0 0 0
0 0 0 0

eiθ2 0 0 0


 Ar3 =




0 0 0 0
0 0 −e−iθ3 0
0 eiθ3 0 0
0 0 0 0




(
2 cosh2 r2 − 1

)

Aθ 2 =




0 0 0 e−iθ2

0 0 0 0
0 0 0 0

eiθ2 0 0 0


 i

2
sinh 2r2 +




1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3


 i

2
(cosh 2r2 − 1)
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Aθ 3 =




0 0 0 0
0 0 e−iθ3 0
0 eiθ3 0 0
0 0 0 0


 i

2
cosh 2r2 sin 2r3 +




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 i sin2 r3.

The nonzero local curvature forms Fµν,

Fr2r3 =




0 0 0 0
0 0 −e−iθ3 0
0 eiθ3 0 0
0 0 0 0


 2 sinh 2r2 Fr2θ2 =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


 2i sinh 2r2

Fr2θ3 =




0 0 0 0
0 0 e−iθ3 0
0 eiθ3 0 0
0 0 0 0


 i sin 2r3 sinh 2r2 Fr3θ3 =




0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


 i sin 2r3 sinh2 2r2

span su(2)× u(1).
The block structure of these matrices suggests that new group directions may be obtained

by taking covariant derivatives of Fr2θ2 along the base coordinate vectors ∂
∂θ2

and ∂
∂r2

,

D ∂
∂θ2
Fr2θ2 =




0 0 0 −e−iθ2

0 0 0 0
0 0 0 0

eiθ2 0 0 0


 2 sinh2 2r2

D ∂
∂r2
Fr2θ2 =




0 0 0 e−iθ2

0 0 0 0
0 0 0 0

eiθ2 0 0 0


 − 4i sinh 2r2 +




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


 4i cosh 2r2

D ∂
∂θ2
D ∂

∂θ2
Fr2θ2 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 2i sinh3 r2 +




0 0 0 e−iθ2

0 0 0 0
0 0 0 0

eiθ2 0 0 0


 2i sinh2 2r2 cosh 2r2.

These matrices and the independent contributions of the previous set span the Lie algebra
su(2) × su(2) × u(1) ⊂ u(4). The connection is not irreducible; however, the product
structure of the subgroup shows that non-trivial U(4) transformations are attainable. This
result reconciles conflicting results from the literature. One concludes after consideration of
the curvature form only the holonomy group to be SU(2)× U(1) [7]. However, a variant of
the square root of SWAP gate

U = 1√
2




√
2 0 0 0

0 1 −i 0
0 −i 1 0
0 0 0

√
2


 (18)

can been explicitly constructed [8]. This universal transformation is an element of
SU(2)× SU(2).
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4. Concluding remarks

Holonomic quantum computation represents a novel approach to quantum computing by
employing non-Abelian geometric phases to perform information processing. The geometric
phase is a beautiful phenomenon with a long history in physics, mathematics and engineering.
We have shown that a result from control theory provides key insight into the foundations
of HQC and opens up the possibility that more physical systems will be amenable to this
approach. For a particular manifestation of HQC—the optical holonomic computer—the
results presented here provide new understanding of the controlled interactions attainable in
the experimental set-up. Moreover, we have proved the existence of a universal set of logic
gates.
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